Nonexistence of global solutions of abstract wave equations with high energies

نویسنده

  • Jorge A Esquivel-Avila
چکیده

We consider an undamped second order in time evolution equation. For any positive value of the initial energy, we give sufficient conditions to conclude nonexistence of global solutions. The analysis is based on a differential inequality. The success of our result is based in a detailed analysis which is different from the ones commonly used to prove blow-up. Several examples are given improving known results in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global existence, decay and blow up solutions for coupled nonlinear wave equations with damping and source terms

We study the initial-boundary value problem for a system of nonlinear wave equations with nonlinear damping and source terms, in a bounded domain. The decay estimates of the energy function are established by using Nakao’s inequality. The nonexistence of global solutions is discussed under some conditions on the given parameters.

متن کامل

Global Existence and Nonexistence for Nonlinear Wave Equations with Damping and Source Terms

We consider an initial-boundary value problem for a nonlinear wave equation in one space dimension. The nonlinearity features the damping term |u|m−1 ut and a source term of the form |u|p−1 u, with m, p > 1. We show that whenever m ≥ p, then local weak solutions are global. On the other hand, we prove that whenever p > m and the initial energy is negative, then local weak solutions cannot be gl...

متن کامل

Nonexistence of global solutions of a class of coupled nonlinear Klein-Gordon equations with nonnegative potentials and arbitrary initial energy

In the paper we consider the nonexistence of global solutions of the Cauchy problem for coupled Klein-Gordon equations of the form

متن کامل

On the nonexistence of time dependent global weak solutions to the compressible Navier-Stokes equations

In this paper we prove the nonexistence of global weak solutions to the compressible Navier-Stokes equations for the isentropic gas in R N , N ≥ 3, where the pressure law given by p(ρ) = aρ γ , a > 0, 1 < γ ≤

متن کامل

On Nonlinear Wave Equations with Degenerate Damping and Source Terms

In this article we focus on the global well-posedness of the differential equation utt − ∆u+ |u|k∂j(ut) = |u|p−1u in Ω× (0, T ), where ∂j is a sub-differential of a continuous convex function j. Under some conditions on j and the parameters in the equations, we obtain several results on the existence of global solutions, uniqueness, nonexistence and propagation of regularity. Under nominal assu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017